This is a submitted manuscript version that has not yet undergone peer-review and is therefore unlikely to represent the final version.

We kindly ask that you do not disseminate this preprint.

© the authors
Measuring the Dark Core of Personality

Morten Moshagen
Ulm University, Germany

Ingo Zettler
University of Copenhagen, Denmark

Benjamin E. Hilbig
University of Koblenz-Landau, Germany

Author Note
Correspondence concerning this manuscript should be directed to Morten Moshagen, Research Methods, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 4, 89081 Ulm, Germany. E-Mail: morten.moshagen@uni-ulm.de.

The data have not been published previously, neither in whole nor in part. Preparation of this manuscript was supported by a grant from the Carlsberg Foundation (CF16-0444) to the second author, and Grants HI 1600/1-2 and HI 1600/6-1 to the final author, who was also supported by the research-training group Statistical Modeling in Psychology (GRK 2277), all funded by the German Research Foundation (DFG).
Abstract

The Dark Factor of Personality (D) is the basic disposition that gives rise to specific personality traits related to antagonistic, malevolent, or socially aversive behavior, thereby representing the common core of dark personality. Whereas existing evidence clearly supports the conceptualization and utility of D, the assessment of D was possible only indirectly and with extensive effort, so far. Applying rational item selection techniques to seven large and highly heterogeneous samples (total N > 165,000), we herein identified sets of items (comprising 70, 35, and 16 items, respectively) that allow for a psychometrically sound and more concise assessment of D. Results indicate that all identified item sets are characterized by high internal consistencies and high retest-reliabilities, clearly map on a single factor in line with the definition of D, and exhibit substantial associations to various relevant criteria, including three assessments of actual behavior. In particular, the item sets showed substantial associations with behavioral measures of individual utility maximization disregarding, accepting, or malevolently provoking disutility on others, and were also related to various justifying beliefs, thereby mirroring the defining features of D. In sum, the identified item sets allow for a concise, reliable, and valid assessment of D.

Keywords: Dark Factor of Personality; D factor; dark traits; dark core

Public Significance Statement

The Dark Factor of Personality (D) is the basic personality disposition from which specific dark traits related to malevolent behavior (such as Psychopathy) arise as manifestations. Improving on previous indirect assessment attempts, we herein identify and validate sets of items differing in length that are optimally suited to measure D.
Measuring the Dark Core of Personality

Researchers, practitioners, and laypeople alike have been interested in stable dispositions related to antagonistic, malevolent, or socially aversive behavior. These traits are often subsumed under the umbrella term “dark traits”, with Machiavellianism, Narcissism, and Psychopathy—the components of the Dark Triad (Paulhus & Williams, 2002)—as the most prominent examples. There is ample evidence indicating that elevated levels in such traits bear important consequences for everyday functioning in a variety of domains.

Specifically, dark traits have been associated with mental health and psychopathology (e.g., Blonigen, Hicks, Krueger, Patrick, & Iacono, 2005; Harrop et al., 2017; Monaghan, Bizumic, & Sellbom, 2016) as well as with aggression, delinquency, and many other consequential behaviors (Muris, Merckelbach, Otgaar, & Meijer, 2017; O’Boyle, Forsyth, Banks, & McDaniel, 2012). Given their importance, a plethora of dark traits with often rather subtle theoretical differences has been introduced in the past decades (Marcus & Zeigler-Hill, 2015; Paulhus & Jones, 2014). Indeed, operationally (in terms of item content) and empirically (in terms of associations) dark traits show a substantial overlap (Muris et al., 2017; O’Boyle, Forsyth, Banks, Story, & White, 2015), giving rise to the question how to conceptually describe and explain their commonalities.

In this respect, Moshagen, Hilbig, and Zettler (2018) provided a theoretical framework unifying and extending previous notions about the commonalities of dark traits (e.g., Diebels, Leary, & Chon, 2018; Jonason, Li, Webster, & Schmitt, 2009; Jones & Figueredo, 2013). Moshagen et al. (2018) proposed that dark traits arise as flavored manifestations of a general underlying dispositional tendency, which thereby represents the common core of all dark traits. This underlying tendency, the Dark Factor of Personality (D), is defined as “the general tendency to maximize one’s individual utility—disregarding, accepting, or malevolently provoking disutility for others—, accompanied by beliefs that serve as justifications” (p. 657).
Utility maximization may refer to monetary- or status-related goals, but likewise to emotional gains such as feelings of superiority or pleasure. Similarly, disutility of others refers to any type of cost an individual may bear, including material, emotional, or physical disutilities. Finally, justifying beliefs comprise any implicit or explicit belief an individual might rely on to justify malevolent behaviors. Examples of such beliefs include a sense of entitlement for oneself or one’s group, viewing the world as a competitive jungle, or believing that others are stupid and, in turn, deserve to be exploited. Importantly, the concept of D does not imply that individuals must hold any one particular belief or set of beliefs; instead, the main idea is that individuals hold some belief(s) that they deem appropriate to justify malevolent acts.

In analogy to the g-factor of intelligence, D is conceptualized as the underlying disposition responsible for the emergence of any particular dark trait, so that any dark trait can be regarded as a specific, flavored manifestation of D. Correspondingly, elevated levels in D may become evident in one or more of the Dark Triad components or in any other dark trait(s), such as Sadism or Spitefulness. However, any specific manifestation of D (i.e., any specific dark trait) may be uniquely flavored by including aspects that are not shared by other dark traits and are thus rather unique to this particular trait (e.g., agentic extraversion in Narcissism, e.g., Crowe, Lynam, Campbell, & Miller, in press) and/or by placing a different emphasis on the defining features of D. For example, high-D individuals might hardly notice that their behavior inflicts disutility on others (arguably pronounced in Psychopathy), or they might notice without caring (arguably pronounced in Machiavellianism), or they might actually derive own utility from the very act of inflicting disutility on others (arguably pronounced in Sadism). Nonetheless, the common characteristic of dark traits is that disutility is inflicted on others in pursuing one’s own goals – as is the very definition of D.
The concept of D received considerable empirical support in a series of studies considering 9 different dark traits (Egoism, Machiavellianism, Narcissism, Moral Disengagement, Psychological Entitlement, Psychopathy, Sadism, Self-Interest, and Spitefulness; Moshagen et al., 2018; Zettler, Moshagen, & Hilbig, 2019). Briefly, bifactor modeling supported the existence of a single general factor in line with the definition of D. This factor exhibited a high degree of rank-order stability over four years, predicted behavioral outcomes, and was substantially related to a host of criterion measures, including aggression and dominance as well as lack of empathy and nurturance. In contrast, specific dark traits rarely explained incremental variance in the criteria, in particular with respect to the behavioral outcomes. Furthermore, D was shown to determine how dark traits develop over time, i.e., D longitudinally predicted individual differences in dark traits measured four years later (mostly to a similar extent as the stability of the to-be-predicted dark traits themselves), and individual change in dark traits could be traced back to a change in D. In tandem, evidence suggests that D captures much of the behaviorally relevant variance of most of the dark traits considered and indeed shapes their development, indicating that D can be considered the very basic disposition from which dark traits arise; that is, the core of dark personality.

Measuring D

D is explicitly conceptualized as a fluid construct, implying that D conforms to the principle of “indifference of the indicator” (Spearman, 1927). This means that D does not crucially depend on a specific choice of indicator variables, as long as a sufficient number of indicator variables related to dark personality are included. Empirical support for this notion has been provided by means of several resampling studies (Moshagen et al., 2018; Zettler et al., 2019). For instance, measuring D by random subsets of the available items only marginally affected the meaning of the resulting factors, as indicated by highly similar
coefficients in the longitudinal prediction of dark traits and by very high correlations between such “reduced” versions of D and D measured via all available items.

Given the conceptualization of D as a fluid construct with dark traits as its specific manifestations, any particular measurement instrument designed to assess a dark trait also will reflect D. In other words, any dark trait inventory acts as a “vehicle” (Jensen, 1992) to measure D, so that, in principle, D could be assessed by employing any arbitrary dark trait measure. However, any specific operational definition of D obviously depends on the indicator variables used. For example, if it is attempted to measure D using an inventory designed to assess Narcissism, the resulting scores will of course primarily reflect Narcissism and only secondarily reflect D. Thus, although any specific dark trait inventory will also measure D to a certain extent, appropriately measuring D itself requires a sufficiently large number of diverse indicators.

So far, D has been assessed by items included in established scales measuring various specific dark traits, regardless of whether the particular vehicle or a particular item is actually suited to indicate D. For instance, Moshagen et al. (2018) measured D by 93 items of 9 different, established scales. However, about 25% of the considered items exhibited low loadings on D, indicating that these items only marginally contributed to the measurement of D and thus could be dropped with little loss of information. In addition, a shortcoming of most existing dark trait measures is the use of predominantly positively keyed items. Specifically, only 10 out of the 93 items used in Moshagen et al. (2018) were negatively keyed, in turn amplifying issues resulting from response biases such as acquiescence. Such response biases might distort the factor structure (DiStefano & Motl, 2006), bias longitudinal assessments (Wetzel, Lüdtke, Zettler, & Böhnke, 2016) and relationships to other measures (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003), or render comparisons across groups of individuals meaningless (e.g., strata defined by education or culture; Cheung & Rensvold,
2000). Obviously, any appropriate measure of D (or the more specific dark traits) should attempt to avoid such biases.

Given the above, a theoretically adequate, concise, and psychometrically sound measurement of D requires a sufficient number of indicators representing a diverse set of dark traits to cover D in full breadth, using (sets of) items that are well suited to indicate D and meet contemporary psychometric standards. Correspondingly, the purpose of the present studies is to identify sets of items derived from existing dark trait inventories using rational item selection techniques to obtain a concise and psychometrically superior measurement of D. In doing so, we also aimed at identifying item sets differing in length to allow for the measurement of D when assessment times must be kept to minimum.

Methods

All studies were approved by the ethics committee of the University of Koblenz-Landau (#154_2018). Additional information on the samples, items, and analyses is provided in the online supplementary materials available at the Open Science Framework (https://osf.io/ag835/?view_only=4a74e94690b848b9ab726b03e75d6a6a).

Participants and Procedure

The studies are based on seven different samples. Samples A1-A3 were used to inform item selection, whereas samples B1-B4 were used to determine the factor structure, psychometric properties, and validity of the finally retained items. All participants provided informed consent and were debriefed after completing the respective study.

Participants of samples A1, A2, A3, and B1 were attracted by international media coverage about D. We set up a website providing general information about D and a questionnaire allowing individuals to determine their level in D. The participants completed the questionnaire on an anonymous and voluntary basis without any compensation apart from feedback on their scores. In samples A1-A3, items were administered according to the
DARK FACTOR OF PERSONALITY

Synthetic Aperture Personality Assessment procedure (Revelle, Wilt, & Rosenthal, 2010): Participants were free to choose to complete 30, 60, or 80 items drawn randomly (and presented in random order) from the itempool (which initially comprised 182 items, and was reduced in two consecutive steps to 162 and 118 items, respectively). Participants opting to complete 80 items received 10 additional questions not pertinent to the present study immediately after completing the items referring to D. Participants in validation sample B1 always completed the same set of 70 ultimately retained items.

The remaining validation samples (B2-B4) were recruited through professionally managed online panels (B2 using MTurk, B3 and B4 using Prolific). In these samples, participants received a flat fee for their participation and, in case of sample B3, an additional payoff (with a maximum of 4 GBP) depending on their choices during the study.

All studies were conducted online. In all samples, we excluded participants who showed suspicious response behaviour (such as failing attention check items, requiring less than 2 sec for each item on average, or always selecting the same response option), who indicated an insufficient proficiency in the English language, or who did not provide information on age and gender. We also excluded records associated with the same ip-address to remove data potentially resulting from multiple participations of the same individual.

The preliminary item evaluation and refinement was based on sample A1 (N = 7,226; 64% male, 77 other; mean age 34.75 years, SD = 13.1). Participants originated from more than 100 countries, though mostly residents of the US (39%) or Denmark (32%; all other ≤ 6%). Participants completed a subset of either 30 (31%) or 60 (69%) items drawn randomly from the initial itempool of 182 items, resulting in a mean covariance coverage of .08.

The first itemselection was performed using sample A2 (N = 74,477; 59% male, 596 other; mean age 35.18 years, SD = 12.1). The participants were from over 150 countries, with most participants living in the US (32%) or Belgium (22%; all other ≤ 5%). Participants
completed a subset of either 30 (34%), 60 (26%), or 80 (40%) items drawn at random from the revised itempool (after the preliminary itemevaluation) comprising 162 items, resulting in a mean covariance coverage of .14.

The final itemselection was performed using sample A3 (N = 77,218; 54% male, 564 other; mean age 35.13 years, SD = 12.5). Again, participants originated from over 150 countries, with relatively large numbers stemming from the US (21%), Germany (20%), and Denmark (14%; all other ≤ 7%). Participants completed a subset of 30 (40%), 60 (11%), or 80 (49%) items drawn randomly from the reduced itempool (after the first itemselection) of 118 items, which led to a mean covariance coverage of .28.

In the first validation sample (B1), participants always completed the 70 finally retained items (presented in random order). Of the 5,190 participants, 51% were male (50 other). Mean age was 29.28 years (SD = 10.7). Most participants originated from the US (20%) or Norway (19%; all other ≤ 6%).

The second validation sample (B2) was used to determine test-retest reliability. Participants completed the 70 finally retained items (presented in random order) twice with a lag of at least 34 days. Of the 130 participants at the first measurement occasion, 77 (60% male, 1 other; mean age = 34.71, SD = 10.0) completed the same items again, on average 34.61 (SD = 0.6) days later (drop-out rate of 41%). The majority of the participants originated from the US (72%) or India (17%; all other ≤ 2%).

The third validation sample (B3) comprised 537 individuals (50% female; mean age 29.93 years, SD = 9.9) who completed the pool of 118 items as obtained after the first itemselection (presented in random order) and afterwards an incentivized behavioral measure of pro-self vs. pro-social value orientations and a similar behavioral task measuring sadism. For the purpose of validation, we only analyze the responses to the 70 finally retained items. Participants primarily originated from the UK (26%) or Poland (12%; all other ≤ 8%).
Participants in the fourth validation sample (B4) completed the 70 finally retained items (again, in random order) at the first measurement occasion ($N = 978$; 50% male, 4 other; mean age 31.08 years, $SD = 9.7$). Ten days later, participants were reinvited to complete a battery of self-report questionnaires serving as criteria, which were also presented in random order. At the end of the second measurement occasion, participants engaged in a cheating task as a behavioral measure of dishonesty. Depending on their behavior in the cheating task, participants either completed a boring search task or were immediately directed to the end of the study. Thus, the incentive for cheating was to avoid tedious work (see Hilbig & Zettler, 2015, Study 3). Data collection at the second measurement occasion was stopped upon $N = 498$ respondents (52% male, 2 other; mean age 30.69 years, $SD = 9.1$) successfully completed the study. The sample was once more diverse in representing participants originating from the UK (24%), Portugal (13%), or Poland (10%; all other ≤ 8%).

Initial Itempool

To derive item sets suited for the measurement of D, we evaluated items from established measures of 12 different dark traits with respect to their ability to indicate D. We attempted to be highly inclusive by considering eight of the dark traits also included in Moshagen et al. (2018) and four additional dark traits (Amoralism-Crudelia, Amoralism-Frustralia, Greed, and Self-Centeredness).\(^1\)

\(^1\) Unlike Moshagen et al. (2018), we did not consider Self-Interest, which is defined as the motivation to pursue gains in “socially valued domains, including material goods, social status, recognition, academic or occupational achievement, and happiness” (Gerbasi & Prentice, 2013, p. 496). From this definition becomes clear that Self-Interest describes a form of utility maximization that rarely implies disutility for others and thus largely lies outside the scope of D. We likewise did not consider Dispositional Envy (e.g., Rentzsch & Gross, 2015), because we consider envy as an emotional state that may act as antecedent or moderator of malevolent acts rather than being an instance of D (cf., Lange, Paulhus, & Crusius, 2018).
We obtained an initial pool of 184 items by considering various measures assessing the 12 dark traits (see supplement for the number of items per dark trait). In selecting the measures, we opted for established full-length versions (over short forms) whenever possible. We often considered multiple measures for the same dark trait to ensure that it is represented in adequate breadth. As detailed below, about one third of the original items were modified to achieve a balance between positively and negatively keyed items. Participants indicated their level of agreement to each item on a five-point Likert response scale ranging from 1 (strongly disagree) to 5 (strongly agree).

Amoralism-Cruelia and Amoralism-Frustralia. Cruelia and Frustralia were represented by 13 and 14 items, respectively, from the AMR40 inventory (Knežević, 2003). We modified 3 items of the scale measuring Frustralia, so that 7 items of this scale were negatively keyed. From the scale measuring Cruelia, 6 items were negatively keyed.

Egoism. Egoism was represented by the corresponding 20-item scale by Weigel, Hessing, and Elffers (1999). We modified 8 items, so that 10 items were negatively keyed.

Greed. Greed was represented by 6 and 5 items from the Dispositional Greed Scales by Seuntjens, Zeelenberg, van de Ven, and Breugelman (2015) and Krekels and Pandelaere (2015), respectively. We modified 4 items, so that 6 of the 11 items were negatively keyed.

Machiavellianism. Machiavellianism was represented by the respective subscale of the Short Dark Triad (Jones & Paulhus, 2014), 6 items from the Mach IV (Christie & Geis, 1970) related to a cynical worldview and manipulative tactics, and 5 items from the Amorality and Desire for Control subscales of the Machiavellian Personality Scale (Dahling, Whitaker, & Levy, 2008). We modified 4 items, so that half of the 20 items were negatively keyed.

Moral Disengagement. Moral Disengagement was represented via the 16-item Propensity to Morally Disengage Scale (Moore, Detert, Treviño, Baker, & Mayer, 2012). We modified 8 items, so that half of the items were negatively keyed.
Narcissism. Narcissism was represented by the 9-item Narcissistic Rivalry subscale of the Narcissistic Admiration and Rivalry Questionnaire (Back et al., 2013), 5 items referring to grandiosity from the respective subscale of the Short Dark Triad, and 4 items related to leadership/authority and exploitativeness/entitlement from the Narcissistic Personality Inventory (Raskin & Hall, 1981). We modified 7 items, so that 8 of the 18 items were negatively keyed.

Psychological Entitlement. Psychological Entitlement was represented using the respective 9-item scale by Campbell, Bonacci, Shelton, Exline, and Bushman (2004) and additional 3 items from the Entitlement Attitudes Questionnaire referring to revenge entitlement (Żemojtel-Piotrowska et al., 2017). We modified 5 items, so that half of the 12 items were negatively keyed.

Psychopathy. Psychopathy was represented by 12 items from the Levenson Self-Report Psychopathy Inventory (LSRP; Levenson, Kiehl, & Fitzpatrick, 1995) tapping egocentricity (5), callousness (3), and anti-social tendencies (4), as well by 8 items from the respective subscale of the Short Dark Triad, leading to a total of 20 items. We did not consider items that describe consequences of Psychopathy (Skeem & Cooke, 2010) such as “I have never gotten into trouble with the law”. We likewise did not consider items from the LSRP that either imply greed (e.g. “Making a lot of money is my most important goal.”) or that refer to strategic manipulation (e.g., “I tell other people what they want to hear so that they will do what I want them to do.”), which is rather aligned with Machiavellianism (McHoskey, Worzel, & Szyarto, 1998). We modified 7 items, so that half of the 20 items were negatively keyed.

Sadism. Sadism was represented by 13 items from the Assessment of Sadistic Personality Inventory (Plouffe, Saklofske, & Smith, 2017) and 7 items from the Short Sadistic
Impulse Scale (O’Meara, Davies, & Hammond, 2011), leading to a total of 20 items. We modified 11 items, so that 11 items were negatively keyed.

Self-Centeredness. Self-Centeredness was represented by the respective 4-item measure provided by Arneklev, Grasmick, Tittle, and Bursik (1993). We modified 2 items, so that half of the items were negatively keyed.

Spitefulness. Spitefulness was representing via 16 items of the corresponding inventory by Marcus, Zeigler-Hill, Mercer, and Norris (2014). One item was excluded, because it exhibited negative loadings on both D and the specific factor for Spitefulness in Moshagen et al. (2018). We modified 6 items, so that 7 items were negatively keyed.

Criterion Measures

Selection of the criteria was guided by the rationale that measures ought to represent (a) actual behavior involving utility maximization at the expense of others (such as cheating), (b) possible justifying beliefs (such as viewing the world as a competitive jungle), (c) relevant outcomes in the realm of antagonistic, malevolent behavior (such as Crime/Delinquency), or (d) important psychological correlates (such as lack of Empathy). We assessed three behavioral measures (cheating, allocation decisions measuring Social Value Orientations, and a structurally similar, newly developed behavioral measure of sadism) in samples B3 and B4, respectively, and 8 self-report measures in sample B4. For all self-report measures (except for Crime and Analogous Behavior, which is scored dichotomously), we used a five-point Likert scale ranging from 1 = strongly disagree to 5 = strongly agree to maintain consistency.

Cheating Task. We employed a probabilistic cheating task as used widely in the behavioral ethics literature, the coin-toss task in the variant employed by Hilbig and Zettler (2015, Study 3). Specifically, following all other measures, participants were asked to perform three tedious and unenjoyable search tasks involving three sets of 100 English pseudowords (e.g., counting how often the letter “y” appeared). The three sets of
pseudowords were shown on the screen to make participants aware of the unpleasantness of the task. Participants were informed that they could skip the search task if they reported to have won in a game of chance: Participants were instructed to take a coin, to toss it exactly twice, and that they may skip the boring search tasks if they reported having tossed exactly two heads. Participants could thus cheat by just reporting two heads, despite having obtained a different outcome (or not having tossed a coin at all). Importantly, participants were informed that they would always receive the complete payment for the study, regardless of whether they completed the boring search tasks or not. The observed outcome in this task is whether participants reported to have won in the game of chance (so that they skipped the boring search task) or whether they completed the boring search task consciously.

Social Value Orientations (SVO). SVO describe preferences for joint outcomes and cooperation vs. a pro-self orientation (Murphy & Ackermann, 2014). In each of the 6 primary tasks of the SVO slider measure (Murphy, Ackermann, & Handgraaf, 2011), participants allocate points (worth 4 GBP per 100 points) between themselves and an unknown other. The extent of prosocial vs. pro-self behavior is measured as angle with lower degrees expressing more individualistic choices. Choices were fully incentive-compatible, that is, consequential for participants’ bonus payment.

Sadism-SVO. To obtain a behavioral measure of sadistic tendencies, we created a SVO-type measure comprising 9 tasks specifically designed to discriminate competitive (i.e., allocations that maximize the difference between one’s own and the other’s outcome – at the cost of minimizing the joint outcome) from individualistic choices (allocations that maximize the own outcome). As in the SVO described above, each task required participants to allocate points (worth 4 GBP per 100 points) between themselves and an unknown other. Higher scores on this measure represent a stronger willingness to forgo own outcomes for the sake of
even further reducing the outcome of the unknown other (i.e., more sadistic behavior). As with the SVO, this measure was fully consequential for participants’ bonus payment.

Aggression. Aggression was measured via the physical (9 items; e.g., “If somebody hits me, I hit back.”) and verbal (5 items; e.g. “When people annoy me, I may tell them what I think of them.”) subscales of the Aggression Questionnaire (Buss & Perry, 1992).

Crime/Delinquency. Crime/Delinquency was measured by 10 items of the Crime and Analogous Behavior Scale (Miller & Lynam, 2003, p. 173). Each statement asks respondents to indicate whether they ever engaged in a certain behavior (such as stealing a car, attacking someone with the intent to injure, being arrested) by responding yes or no.

Competitive and Dangerous Worldviews. Competitive Jungle Worldviews are beliefs characterizing the world as a “ruthless, amoral struggle for resources and power in which might is right and winning everything” (Duckitt, Wagner, du Plessis, & Birum, 2002, p. 78). Dangerous and Threatening Worldviews are beliefs that “the social world is a dangerous and threatening place in which good, decent people’s values and way of life are threatened by bad people” (Duckitt et al., 2002, p. 78). We measured Competitive (e.g., “It’s a dog-eat-dog world where you have to be ruthless at times.”) and Dangerous (e.g., “There are many dangerous people in our society who will attack someone out of pure meanness, for no reason at all.”) Worldviews by 6 items each according to Sibley and Duckit (2009).

Distrust. We assessed Distrust using the corresponding 10-item subscale (e.g., “I distrust people.”) of the IPIP 16PF (Goldberg et al., 2006).

Dominance. Within the concept of social dominance orientation, the Dominance subdimension represents “a preference for group-based dominance hierarchies in which dominant groups actively oppress subordinate groups” (Ho et al., 2015, p. 1004). It was assessed using the respective 4-item subscale (e.g., “Some groups of people are simply inferior to other groups.”) of the SDO7S (Ho et al., 2015).
Empathy. Empathy was assessed via the 22-item version (e.g., “I really enjoy caring for other people.”) of the Empathy Quotient (Wakabayashi et al., 2006).

Internalized Moral Identity. Internalized Moral Identity was assessed via the respective 5-item subscale of the measure of Moral Identity (Aquino & Reed, 2002). Participants are provided with a description of a “moral” person (e.g., caring, fair, kind) and are asked to indicate the importance of this description for participants’ self-concept (e.g., “I strongly desire to have these characteristics.”).

Statistical Analyses

Given the planned-missingness design in sample A1-A3, missing data can be assumed to be missing completely at random (MCAR), so we based all exploratory factor analyses (EFAs; using maximum-likelihood estimation) on a covariance matrix obtained using pairwise deletion (which is unbiased in the case of MCAR; Little & Rubin, 2002). In the structural equation models, missing data (samples A2-A3) were addressed by employing full information maximum likelihood estimation. There were no missing data in samples B1-B4, so we employed plain maximum likelihood (samples B1-B3) and robust-weighted least squares (to address the dichotomous response format of the Crime/Delinquency measure in sample B4), respectively. Huber-White sandwich estimated standard errors and corrected test-statistics ($T_{RML}^{(e1)}$ in Yang, Jiang, and Yuan, 2018) were applied to account for the effects of model size (e.g., Moshagen, 2012) and non-normality (e.g., Enders, 2001). In light of the extreme statistical power of the model chi-square test-statistic with sample sizes as large as in the present studies,² model fit was evaluated through the SRMR and the RMSEA.

² With $N = 75,000$, the power to detect misspecifications corresponding to $RMSEA \geq .001$ on $\alpha = .05$ is $> 99\%$ (Moshagen & Erdfelder, 2016).
We specified a bifactor model (e.g., Reise, 2012) to model the hypothesized structure of D in line with the one employed in Moshagen et al. (2018). Briefly, bifactor models assume a general factor that affects all items (representing D) along with a set of specific factors that capture the remaining systematic covariance between items representing each specific dark trait. The specific factors and D were constrained to orthogonality, as were all item uniquenesses. The ECV (explained common variance) was used to gauge the relative proportion of common variance explained by D versus the specific dark traits (Ten Berge & Sočan, 2004), so that an ECV of 1 indicates that all common variance between the items representing a particular dark trait is explained by D.

The final item set was obtained based on a rational item-selection approach using meta-heuristics (Eisenbarth, Lilienfeld, & Yarkoni, 2015; Schroeders, Wilhelm, & Olaru, 2016), which have been shown to outperform traditional approaches (Olaru, Witthöft, & Wilhelm, 2015). The selection of items out a pool of possible candidates to optimize a criterion can be regarded as a combinatorial problem. Given that it is rarely possible to evaluate all permutations of items, suitable algorithms (such as genetic algorithms, GA; Holland, 1992) heuristically find a viable solution in a reasonable time by applying evolutionary principles. In a nutshell, the GA optimizes fitness (a fitting function) over various generations (iterations) that change according to selection, cross-over, and mutation. At each iteration, various item sets are evaluated with respect to their value on the fitting function (fitness), the best (fittest) item sets (selection) are recombined (cross-over), some additional items are added and/or removed (mutations), and the resulting item sets reevaluated. This process continues until a maximum number of iterations is reached.

To estimate correlations involving the cheating variable, we needed to account for the fact that a certain proportion of those participants who indicated to have skipped the boring search tasks did so because they actually obtained two heads in the game of chance (i.e., they
did not cheat). The observed outcome is therefore contaminated by honest (lucky) individuals, so that correlations involving this outcome need to be disattenuated using adapted procedures (Heck, Thielmann, Moshagen, & Hilbig, 2018; Moshagen & Hilbig, 2017).

Structural equation modeling was performed using Mplus (version 7.11; Muthén & Muthén, 2015), all other analyses in R. We used EFA as implemented in the psych package (Revelle, 2018), the RRreg package (Heck & Moshagen, 2018) to estimate correlations (and bootstrapped p-values) involving the cheating variable, an implementation of parallel analysis by Auerswald and Moshagen (in press), and the GA package (Scrucca, 2013).

Results

Item selection proceeded in a three-step process based on samples A1-A3. The resulting item sets were then evaluated and validated in samples B1-B4.

Preliminary Item evaluation

Items from the initial pool of 184 items were considered for further inclusion based on their intercorrelations and their item-total correlations in sample A1 (N = 7,226). This led to the revision of 4 items and the exclusion of 27 items due to item-total correlations < .30.

Concerning the items representing Psychopathy, we excluded 4 items related to disinhibition (e.g., “I avoid dangerous situations”), because this theme was only loosely related to the total score. To maintain a sufficient number of items representing Psychopathy, we added 5 newly developed items focusing on (low) impulse control. The modified item pool thus contained 162 items, of which 81 were negatively keyed (see the supplementary materials for the distribution of items across traits and for a complete list of items).

First Item selection

To determine the factorial structure of the modified item pool of 162 items, we performed an EFA using the data from sample A2 (N = 74,477). Parallel analysis based on the correlation matrix with 95\(^{th}\) percentile reference eigenvalues (Auerswald & Moshagen, in
press) indicated the presence of 14 factors, which is closely aligned with the expectation of finding a general factor (D) along with a specific factor for each of the dark traits. The scree plot (Figure 1) indicates a strong first factor (eigenvalue 43.3) explaining 27% of the variance along with 13 minor factors (eigenvalues 1.3 – 4.7) explaining between 1% and 3% of the variance. Given that we were interested in measuring D, we extracted the first factor only, leading to item loadings ranging from .19 to .73 (mean = .50; see supplement for details).

Based on the EFA results, the item pool was further refined by dropping 25 items with low loadings and another 19 items due to very high similarity to other items, while at the same time maintaining a balance between positively and negatively keyed items. The reduced item pool thus comprised 118 items (59 negatively keyed).

Final Itemselection

An EFA using sample A3 (N = 77,218) on the reduced item pool of 118 items yielded one strong general factor (eigenvalue 35.0) explaining 30% of the variance and 11 minor factors (eigenvalues 1.1 – 3.4) explaining 1% - 3% of the variance. Extracting the first factor led to item loadings ranging from .35 to .71 (mean = .53; see supplement). We then estimated a bifactor model for the 118 items by specifying a general factor for D and a specific factor for each dark trait capturing the remaining commonalities of the items representing that dark trait. The model yielded a good fit to the data, $\chi^2(6667) = 226,089, p < .01; \text{SRMR} = .040; \text{RMSEA} = .021 \ (90\%-\text{CI}: .021 - .021$; note, however, that the RMSEA is downwards biased in the presence of missing data, e.g., Davey, Savla, & Luo, 2005; Moshagen & Auerswald, 2018). All items significantly loaded on D (range: .34 - .73; mean .52; see supplement for details). The ECVs (Table 1) indicate that D is strongly reflected in the items of all dark traits, in particular in those representing Psychopathy ($ECV = .92$), Amoralism-Frustralia ($ECV = .90$), and Machiavellianism ($ECV = .90$). Indeed, the variance of the specific factor for Psychopathy was very small and did not differ significantly from zero ($p = .10$), despite the
very high power resulting from the large sample. On average over all items, D explained 78% of the common variance. These results verify that all dark traits share a common core, as represented by D, and that the majority of the retained items are well-suited indicators of D.

To obtain the final set of items, we used a rational item-selection approach based on the GA (as described above) using a custom fitness-function (Olaru, Schroeders, Hartung, & Wilhelm, in press) optimizing the following criteria: (1) maximize the correlation to the total score across the 118 items in the pool; (2) maximize the loadings on D (and, thus, reliability); (3) minimize the RMSEA and the SRMR; (4) balance positively and negatively keyed items, both with respect of the number of items and with respect to the average loading; (5) items should stem from diverse dark traits measures; (6) items should work similarly in different groups (i.e., across gender and age groups as well as across different countries).

We used several approximations in determining the criteria, because it did not prove feasible to estimate a bifactor model in the GA.\(^3\) We estimated an EFA model forcing the extraction of a single factor to determine loadings and model fit. To approximate (metric) measurement invariance across groups, we estimated a single factor model separately for the groups of interest (e.g., separately for females and males) and considered the standard deviation of each item loading across groups as an indicator of differential item functioning (see Hartung, Doebler, Schroeders, & Wilhelm, 2018, for a similar approach).

Given that the GA does not necessarily yield the best (i.e., optimal) solution, we applied the algorithm 10 times to determine selection frequencies of each item (Olaru et al., in press). Beyond the GA results, final item selection was also guided by theoretical rationales to avoid redundancies and to ensure that D is measured in sufficient breath. This procedure resulted in a final set of 70 items (35 negatively keyed), which we refer to as D70.

\(^3\) Due to the large amount of missing data, estimation of a single model took about one day, so estimating bifactor models in the GA would require years.
Further, we applied the GA in the same way as above using the items retained in the D70 as the initial item pool to obtain two shorter versions. Based on these results (and additionally applying theoretical rationales) we obtained a set of 35 items (17 negatively keyed), which we refer to as D35. The same approach was pursued (using the D35 as a basis) to obtain a 16-item version (D16; 8 negatively keyed).

Confirmatory Factor Analyses

We first verified the factor structure of the D70 via bifactor modeling using new data. To this end, we pooled the data of the four validation samples (B1 to B4; using the first measurement occasion of samples B2 and B4) yielding a combined sample size of $N = 6,838$.

Estimation of the full bifactor model specifying a general (D) and 12 specific factors did not converge successfully because some specific factors failed to exhibit any variance. Specific factors with (near) zero variance occur when the common variance of the associated items is entirely explained by D, so that no covariance remains to be explained by the specific factor. We thus omitted the specific factors for the items representing Egoism, Machiavellianism, Moral Disengagement, Psychological Entitlement, Psychopathy, and Spitefulness. The revised model (which now comprised a general factor along with six specific factors) yielded an adequate fit to the data, $\chi^2(2,310) = 31,085, p < .01; \text{SRMR} = .040; \text{RMSEA} = .043$ (95%-CI: .042 - .043). Most loadings on D were of an average magnitude (range: .39 - .70; mean .56; Table 2). The items exhibiting the 10 strongest loadings on D stemmed from seven different dark traits measures. The ECVs (Table 1) are slightly higher compared to those obtained with the pool of 118 items, which was to be expected, given that items were selected with respect to their ability to indicate D rather than the more specific dark traits. Across all items, D explained an average of 85% of the common variance.

We also used the pooled validation sample to evaluate the factor structure of the D35 and the D16 by only considering the responses to items retained in these versions. In light of
the comparatively small number of items that arguably do not carry sufficient information to obtain meaningful specific factors, we fitted a standard single-factor confirmatory factor model to the data. Model fit was acceptable for both, the D35, $\chi^2(560) = 10,366, p < .01$; $SRMR = .038$; $RMSEA = .050$ (90%-CI: .050 - .051), and the D16, $\chi^2(104) = 2,238, p < .01$; $SRMR = .034$; $RMSEA = .055$ (90%-CI: .053 - .057). All items exhibited substantial loadings on D in both versions (Table 2; mean loading D35 = .59; mean loading D16 = .62). In addition, the observed correlations of the D35 and the D16 to the D70 ($r = .98$ and $r = .95$, respectively) show that the shorter versions are able to provide a close approximation of the D70, in sum suggesting that both versions are reasonable shorter measures of D.

Internal Consistencies

We computed Cronbach’s α estimates of internal consistency in the pooled validation sample for the D70 as well as for the D35 and the D16 by considering the respective relevant items. Internal consistency of the D70 was excellent ($\alpha = .970$ [95%-CI: .969 - .971]) and was very high for the shorter versions (D35: $\alpha = .950$ [.948 - .952]; D16: $\alpha = .906$ [.903 - .909]).

Retest Reliability

Retest-reliability over approximately 34 days was determined using participants from sample B3 who completed both measurement occasions ($N = 77$). Retest-reliability of the D70 was $r_{rt} = .95$ (95%-CI: .92 - .97). We further considered only the responses to the items contained in the D35 and the D16, respectively, to obtain an estimate of retest-reliability of the shorter versions, resulting in $r_{rt} = .93$ (.89 - .96) for the D35 and $r_{rt} = .90$ (.85 - .94) for the D16. Retest-reliability of all versions thus proved to be high.

Criterion-related Validity

We first consider the behavioral outcomes assessed herein, i.e., the ability of the D70 to predict own utility maximization disregarding (cheating), accepting (SVO), or malevolently provoking (Sadism-SVO) disutility for others. In line with the conceptualization of D, the
DARK FACTOR OF PERSONALITY

D70 was significantly associated with dishonest behavior, $r = .34$, a pro-social vs. pro-self orientation, $r = -.43$, and with the behavioral measure of sadism, $r = .22$. Highly similar correlations to the behavioral outcomes were obtained when using the D35 or the D16 (Table 3), indicating that all versions are well suited to predict actual behavior.

The D70 also correlated substantially with all self-reported criteria under consideration in the expected direction (Table 3; $.28 \leq |r| \leq .92$). Again, the correlations to the criteria were similar when computed based on the subsets of items contained in the D35 and D16, respectively, thereby supporting nomological consistency (Hilbig, Moshagen, & Zettler, 2016; Thielmann & Hilbig, in press). More specifically, the justifying beliefs aspect of D was reflected in substantial correlations with a preference for group-based dominance hierarchies ($.59 \leq r \leq .61$), Vile World Beliefs ($.21 \leq r \leq .28$), and, in particular, Competitive Jungle Worldviews ($.91 \leq r \leq .93$). The importance of D for real-word behavior was supported by substantial relations to Aggression ($.65 \leq r \leq .67$) and Crime/Delinquency ($.32 \leq r \leq .37$).

Finally, all item sets displayed theoretically sound relationships to relevant psychological covariates, suggesting that D is characterized by Distrust ($.49 \leq r \leq .51$), (lack of) Empathy ($-.31 \geq r \geq -.37$), and a low importance of Moral Identity for the self ($-.65 \geq r \geq -.73$).

General Discussion

One way to explain and describe patterns of antagonistic, malevolent, and socially aversive behavior is to assume stable predispositions towards such behaviors. A large body of evidence indicates that such dark traits are closely linked to psychological adjustment and interpersonal behavior in a variety of domains. In light of the empirical and theoretical overlap between dark traits, Moshagen et al. (2018) argued that all dark traits arise from the same underlying dispositional tendency “to maximize one’s individual utility—disregarding, accepting, or malevolently provoking disutility for others—, accompanied by beliefs that serve as justifications” (p. 657), which they called the Dark Factor of Personality (D).
Whereas Moshagen et al. (2018) and Zettler et al. (2019) provided ample evidence in favor of the conceptualization of D, the actual assessment of D was a rather cumbersome matter so far. We tackled this issue in the present research by identifying sets of items that can be used to measure D more concisely while exhibiting superior psychometric properties compared to the assessment relied upon in previous studies.

The resulting item sets—which we refer to as D70, D35, and D16—are characterized by high internal consistencies and high retest-reliabilities, balance positively and negatively keyed items, exhibit substantial associations to a variety of relevant criteria, including three behavioral outcomes, and clearly map on a single factor representing D. Indeed, exploratory factor analyses as well as bifactor modeling on a large number of items strongly suggested the presence of a single factor that captures most of the communalities of the indicators, thus once more providing evidence in favor of the notion of D as the basic disposition underlying dark traits. Likewise, the specific factors exhibited only little or no variance beyond D. The latter, however, may also be a consequence of selecting items with respect to their ability to indicate D rather than the more specific dark traits. As such, whereas we maintain that the theoretical model involving specific factors capturing the remaining covariances of the items designed to measure specific dark traits is appropriate to model D along with several specific dark traits, using item sets presented herein may result in some dark traits empirically not exhibiting any specific variance beyond D at all.

In this context, it should also be noted that the question of the dimensionality of many dark traits is far from settled (e.g., Miller, Vize, Crowe, & Lynam, in press; Muris et al., 2017). However, this issue is largely irrelevant with respect to (the measurement of) D, because D is agnostic regarding the dimensionality of a specific manifestation. For reasons of parsimony, we assumed unidimensionality for each specific dark trait in the bifactor models and likewise assumed that each specific factor reflects the specifics of a single dark trait.
Nevertheless, it is entirely possible that, say, Psychopathy (when measured broadly) comprises several distinguishable subdimensions beyond D, so it might also be reasonable to specify more than one specific factor representing various subdimensions of a single dark trait or to attempt to determine common themes that are shared across various specific dark traits (e.g., Watts, Waldman, Smith, Poore, & Lilienfeld, 2017). Concerning D and the measurement thereof, however, the crucial aspect is the unidimensionality of D itself.

A related issue pertains to the selection of instruments (and items) for our initial itempool. For many of the considered traits, various measures exist that often differ substantially in length, scope, and even their theoretical underpinning. For example, there is a notable number of established self-report measures of Psychopathy, which also reflect “competing conceptualizations of the psychopathy construct” (Watts et al., 2017, p. 953). Similar issues are evident in other dark traits as well, in particular concerning Narcissism (e.g., Cain, Pincus, & Ansell, 2008; Crowe et al., in press; Krizan & Herlache, 2018).

Consequently, the approach taken herein to merely consider a single or a few instruments to obtain items representing a particular dark trait is—necessarily—somewhat arbitrary. However, the fluid nature of D implies that the indicators to assess D are ultimately interchangeable, so that any measure (with sound psychometric properties and sufficient breadth in content) is generally suited to indicate D.

The D70, and the shorter versions as well, exhibited a high degree of criterion-related validity. Most importantly, substantial relations to all three behavioral outcomes reflecting the utility-based aspect of D were observed. Specifically, D explained behavioral dishonesty as measured in a cheating task (representing the tendency to maximize own utility disregarding other’s disutility), the SVO expressing the tendency to prefer pro-social over pro-self outcomes (the tendency to maximize own utility accepting other’s disutility), and behavioral sadism (the tendency to derive own utility from malevolently provoking disutility on others).
Similarly, the notion that individuals with elevated levels on D hold beliefs that serve to justify malevolent behavior was mirrored by the tendency of such individuals to endorse beliefs characterizing the world as a competitive jungle or as a dangerous and threatening place, and to favor dominance hierarchies of social groups. Thus, the obtained item sets exhibit associations to outcomes consistent with the very theoretical definition of D.

Beyond the links to outcomes representing key characteristics of the theoretical definition of D, its relevance for real-world behavior was further evident in substantial associations with (self-reported) aggression as well as with criminal and deviant behaviors. The obtained item sets also exhibited theoretically reasonable links to important psychological correlates, characterizing high-D individuals by lack of empathy, a lower importance of moral-identity for the self-concept, and elevated distrust towards others. In sum, the present studies provide ample evidence concerning the validity of D and the identified item sets to measure D.

Limitations

Some limitations should also be considered. Although online data collection is considered largely unproblematic (Miller, Crowe, Weiss, Maples-Keller, & Lynam, 2017; Weigold, Weigold, & Russell, 2013), future studies should generalize the results to offline samples assessing D in a paper-pencil format. Moreover, D was always assessed using self-reports, so that some of the results might be distorted owing to socially desirable responding (e.g., Tourangeau & Yan, 2007). While we are currently in the process of obtaining data allowing for the determination of the extent of self-observer agreement, it would be beneficial to consider peer-reports as a complementary data source (McAbee & Connelly, 2016).

A particular strength of present studies is that the results were obtained based on very large and highly diverse samples, including a substantial proportion of individuals from societies that are not characterized as western, educated, industrialized, rich, and democratic
(WEIRD; Henrich, Heine, & Norenzayan, 2010). For instance, across samples, more than 3,000 individuals originated from Thailand, more than each 2,000 from Brazil and India, and more than 1,000 each from Latvia, the Philippines, Romania, and Singapore. This strength, however, also comes at the cost that many participants were not native in English, which might have led to subtle shifts in the comprehension of some items. In this regard, it would be important to provide the item sets in languages other than English. Likewise, one criterion during item selection explicitly took differential item functioning across groups, including cultures, into account. However, we did not conduct a formal test of measurement invariance across groups; neither did we investigate cultural differences in detail.

Conclusion

These issues notwithstanding, we herein identified sets of items that are well suited to indicate D in a psychometrically sound way, clearly map on a single factor in line with the definition of D, and exhibit a high degree of validity as evidenced by the relations to various criterion measures, including three behavioral outcomes. Thereby, we go far beyond the rather cumbersome assessment of D as relied upon in previous studies. We are confident that the provision of item sets with different length—with the D70 providing the most comprehensive representation of D and the shorter D35 and D16 as reasonable proxies when there are constraints on the assessment time—may stipulate further research on dark traits and D.

References

Harrop, T. M., Preston, O. C., Khazem, L. R., Anestis, M. D., Jenearick, R., Green, B. A., & Anestis, J. C. (2017). Dark traits and suicide: Associations between psychopathy,
narcissism, and components of the interpersonal–psychological theory of suicide.

Table 1

Explained Common Variance by D

<table>
<thead>
<tr>
<th>Items</th>
<th>Sample A3 ($N = 77,218$)</th>
<th>Samples B1-B4 ($N = 6,838$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoralism-Crudelia</td>
<td>0.73</td>
<td>0.76</td>
</tr>
<tr>
<td>Amoralism-Frustralia</td>
<td>0.90</td>
<td>0.83</td>
</tr>
<tr>
<td>Egoism</td>
<td>0.71</td>
<td>1.00(^a)</td>
</tr>
<tr>
<td>Greed</td>
<td>0.53</td>
<td>0.57</td>
</tr>
<tr>
<td>Machiavellianism</td>
<td>0.90</td>
<td>1.00(^a)</td>
</tr>
<tr>
<td>Moral Disengagement</td>
<td>0.71</td>
<td>1.00(^a)</td>
</tr>
<tr>
<td>Narcissism</td>
<td>0.77</td>
<td>0.76</td>
</tr>
<tr>
<td>Psychological Entitlement</td>
<td>0.65</td>
<td>1.00(^a)</td>
</tr>
<tr>
<td>Psychopathy</td>
<td>0.92</td>
<td>1.00(^a)</td>
</tr>
<tr>
<td>Sadism</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Self-Centeredness</td>
<td>0.78</td>
<td>0.83</td>
</tr>
<tr>
<td>Spitefulness</td>
<td>0.81</td>
<td>1.00(^a)</td>
</tr>
</tbody>
</table>

Note. ECVs in sample A3 are based on a bifactor model involving 118 items, whereas the ECVs in the pooled validation samples B1-B4 are based on a bifactor model only involving the items included in the D70.

\(^a\)The associated specific factor exhibited no variance, implying an *ECV* of 1.00.
<table>
<thead>
<tr>
<th>#</th>
<th>D70</th>
<th>D35</th>
<th>D16</th>
<th>#</th>
<th>D70</th>
<th>D35</th>
<th>D16</th>
<th>#</th>
<th>D70</th>
<th>D35</th>
<th>D16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>.60</td>
<td>.63</td>
<td>.65</td>
<td>25*</td>
<td>.49</td>
<td>.49</td>
<td>.49</td>
<td>49</td>
<td>.46</td>
<td>.46</td>
<td>.46</td>
</tr>
<tr>
<td>2*</td>
<td>.66</td>
<td>.65</td>
<td>.62</td>
<td>26</td>
<td>.57</td>
<td>.57</td>
<td>.57</td>
<td>50</td>
<td>.68</td>
<td>.66</td>
<td>.64</td>
</tr>
<tr>
<td>3</td>
<td>.60</td>
<td></td>
<td></td>
<td>27*</td>
<td>.49</td>
<td>.49</td>
<td>.49</td>
<td>51</td>
<td>.59</td>
<td>.57</td>
<td>.57</td>
</tr>
<tr>
<td>4*</td>
<td>.48</td>
<td>.47</td>
<td></td>
<td>28</td>
<td>.55</td>
<td>.57</td>
<td>.57</td>
<td>52</td>
<td>.55</td>
<td>.57</td>
<td>.57</td>
</tr>
<tr>
<td>5*</td>
<td>.48</td>
<td>.47</td>
<td></td>
<td>29</td>
<td>.60</td>
<td>.57</td>
<td>.57</td>
<td>53</td>
<td>.51</td>
<td>.50</td>
<td>.50</td>
</tr>
<tr>
<td>6</td>
<td>.57</td>
<td>.57</td>
<td>.56</td>
<td>30</td>
<td>.66</td>
<td>.66</td>
<td>.64</td>
<td>54</td>
<td>.58</td>
<td>.60</td>
<td>.62</td>
</tr>
<tr>
<td>7*</td>
<td>.52</td>
<td></td>
<td></td>
<td>31*</td>
<td>.43</td>
<td>.43</td>
<td>.43</td>
<td>55</td>
<td>.49</td>
<td>.50</td>
<td>.47</td>
</tr>
<tr>
<td>8</td>
<td>.60</td>
<td></td>
<td></td>
<td>32</td>
<td>.61</td>
<td>.61</td>
<td>.61</td>
<td>56</td>
<td>.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9*</td>
<td>.48</td>
<td></td>
<td></td>
<td>33*</td>
<td>.64</td>
<td>.64</td>
<td>.64</td>
<td>57</td>
<td>.54</td>
<td>.54</td>
<td>.54</td>
</tr>
<tr>
<td>10*</td>
<td>.47</td>
<td></td>
<td></td>
<td>34*</td>
<td>.58</td>
<td>.59</td>
<td>.61</td>
<td>58</td>
<td>.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.64</td>
<td>.63</td>
<td>.60</td>
<td>35*</td>
<td>.47</td>
<td>.57</td>
<td>.57</td>
<td>59</td>
<td>.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12*</td>
<td>.54</td>
<td></td>
<td></td>
<td>36</td>
<td>.58</td>
<td>.58</td>
<td>.58</td>
<td>60</td>
<td>.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.50</td>
<td></td>
<td></td>
<td>37*</td>
<td>.59</td>
<td>.59</td>
<td>.59</td>
<td>61</td>
<td>.39</td>
<td>.39</td>
<td>.39</td>
</tr>
<tr>
<td>14</td>
<td>.67</td>
<td>.65</td>
<td></td>
<td>38*</td>
<td>.60</td>
<td>.61</td>
<td>.61</td>
<td>62</td>
<td>.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15*</td>
<td>.51</td>
<td>.52</td>
<td></td>
<td>39</td>
<td>.44</td>
<td>.44</td>
<td>.44</td>
<td>63</td>
<td>.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>.68</td>
<td>.67</td>
<td></td>
<td>40*</td>
<td>.61</td>
<td>.62</td>
<td>.62</td>
<td>64</td>
<td>.69</td>
<td>.69</td>
<td>.69</td>
</tr>
<tr>
<td>17*</td>
<td>.69</td>
<td>.72</td>
<td>.75</td>
<td>41*</td>
<td>.54</td>
<td>.53</td>
<td>.53</td>
<td>65</td>
<td>.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>.64</td>
<td>.63</td>
<td></td>
<td>42*</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>66</td>
<td>.63</td>
<td>.67</td>
<td>.67</td>
</tr>
<tr>
<td>19</td>
<td>.58</td>
<td>.60</td>
<td></td>
<td>43</td>
<td>.48</td>
<td>.48</td>
<td>.48</td>
<td>67</td>
<td>.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>.60</td>
<td>.60</td>
<td></td>
<td>44</td>
<td>.63</td>
<td>.63</td>
<td>.63</td>
<td>68</td>
<td>.65</td>
<td>.68</td>
<td>.70</td>
</tr>
<tr>
<td>21</td>
<td>.70</td>
<td>.69</td>
<td></td>
<td>45</td>
<td>.52</td>
<td>.52</td>
<td>.52</td>
<td>69</td>
<td>.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>.46</td>
<td></td>
<td></td>
<td>46*</td>
<td>.53</td>
<td>.53</td>
<td>.53</td>
<td>70</td>
<td>.59</td>
<td>.61</td>
<td>.61</td>
</tr>
<tr>
<td>23</td>
<td>.55</td>
<td></td>
<td></td>
<td>47*</td>
<td>.47</td>
<td>.47</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>.57</td>
<td>.57</td>
<td>.56</td>
<td>48</td>
<td>.63</td>
<td>.64</td>
<td>.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Starred items are negatively keyed. All loadings differ significantly from zero at \(p < .05 \). Estimates based on the pooled validation samples B1-B4 (\(N = 6,838 \)). See supplement for the verbatim items.
Table 3

Internal Consistencies and Correlations to Criterion Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 D70</td>
<td></td>
<td>(.97)</td>
</tr>
<tr>
<td>2 D35</td>
<td></td>
<td>(.95)</td>
<td></td>
</tr>
<tr>
<td>3 D16</td>
<td></td>
<td>(.91)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggression</td>
<td></td>
<td>(.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheating</td>
<td>.34</td>
<td>.35</td>
<td>.36</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>Crime/Delinquency</td>
<td>.32</td>
<td>.35</td>
<td>.37</td>
<td>.63</td>
<td>.09</td>
<td>(.62)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitive Jungle</td>
<td>.92</td>
<td>.93</td>
<td>.91</td>
<td>.67</td>
<td>.19</td>
<td>.37</td>
<td>(.70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dangerous World</td>
<td>.28</td>
<td>.26</td>
<td>.21</td>
<td>.30</td>
<td>.01</td>
<td>-.02</td>
<td>.34</td>
<td>(.79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distrust</td>
<td>.51</td>
<td>.51</td>
<td>.49</td>
<td>.49</td>
<td>-.08</td>
<td>.15</td>
<td>.57</td>
<td>.66</td>
<td>(.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominance</td>
<td>.59</td>
<td>.61</td>
<td>.59</td>
<td>.41</td>
<td>.16</td>
<td>.29</td>
<td>.73</td>
<td>.12</td>
<td>.28</td>
<td>(.71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy</td>
<td>-.31</td>
<td>-.37</td>
<td>-.36</td>
<td>-.26</td>
<td>-.21</td>
<td>-.18</td>
<td>-.33</td>
<td>.04</td>
<td>-.20</td>
<td>-.21</td>
<td>(.89)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral Identity</td>
<td>-.65</td>
<td>-.71</td>
<td>-.73</td>
<td>-.44</td>
<td>-.26</td>
<td>-.25</td>
<td>.67</td>
<td>.01</td>
<td>.37</td>
<td>-.39</td>
<td>.42</td>
<td>(.81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadism-SVO</td>
<td>.22</td>
<td>.24</td>
<td>.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.93)</td>
<td></td>
</tr>
<tr>
<td>SVO</td>
<td>-.43</td>
<td>-.45</td>
<td>-.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.16</td>
<td></td>
</tr>
</tbody>
</table>

Note. Cronbach’s alpha estimates of internal consistency on the diagonal. Correlations between the D70, D35, and D16 are based on the pooled validation samples B1-B4 (N = 6,838); all r differ significantly from zero at p < .05. Correlations between D70, D35, and D16 to 4-12 are based on sample B4 (N = 498); |r| > .10 (|r| > .125 concerning correlations involving the cheating task) differ significantly from zero at p < .05. Correlations between D70, D35, and D16 to 13-14 are based on sample B3 (N = 537); all r differ significantly from zero at p < .05.
Figures

Figure 1. Screeplot (showing the first 50 factors) obtained during the initial item selection with 162 items and sample A2 ($N = 74,477$).